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Measuring displacement gradients and strains in faulted rocks 
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Abstract--In homogeneous deformations, spatial gradients of the displacement field are constant and related to 
strain parameters by straightforward algebraic relationships. Deformations which are inhomogeneous (displace- 
ment gradients values are not constant) when viewed at one scale may be statistically homogeneous (have 
approximately constant displacement gradients) when viewed at a smaller scale. From average values of the 
displacement gradients in a statistically homogeneous deformation, one can calculate bulk strains. Displacement 
diagrams provide a way to determine the displacements of material points at different positions within 
inhomogeneously deformed media. From these data, one may measure mean values of the displacement 
gradients for the deformation, and if the gradients are approximately constant, calculate bulk strains. This strain 
measurement technique yields reasonable strain values. Strain values from a natural fault array in the Tennessee 
Appalachians (U.S.A.) differ slightly from values reported earlier, but still conform with kinematic indicators in 
those deformed rocks. 

INTRODUCTION 

IN CONTINUOUS deformations, displacement vectors vary 
smoothly with position, displacement gradients are finite 
and strain values exist at all points. Continuous deforma- 
tions may be homogeneous, where displacement gra- 
dients and strain values are independent of position, or 
inhomogeneous, where displacement gradients and 
strain values vary with position (Ramsay 1967, 1969). In 
discontinuous deformations, displacement vectors do 
not vary smoothly with position, displacement gradients 
are not finite at all points, and strain values do not exist 
where displacement gradients are undefined. Whether 
we perceive a particular displacement vector field to be 
continuous or discontinuous, however, depends on the 
scale at which we observe the deformation (King 1983). 
Deformations which appear discontinuous at one scale 
may appear continuous if the observation scale is mag- 
nified or reduced sufficiently (Ramsay 1969). The 
kinematic character noted for a particular deformation 
at a given observation scale should not be construed as 
indicating in any way the mechanical processes by which 
the deformation accrued. When observed at the appro- 
priate scale, crystal-plastic deformation mechanisms 
generate discontinuous displacement vector fields (e.g. 
fig. 2.5 in Ramsay & Huber 1983). Brittle processes may 
generate macroscopically ductile deformations with 
apparently continuous displacement vector fields (see 
discussion in Rutter 1986). 

Consider deformations which are inhomogeneous at 
the scale of a hand sample or an outcrop, with localized 
regions like ductile deformation zones (DDZs) where 
strains are relatively high within a medium where strains 
are relatively low. If this locally inhomogeneous 
deformation is statistically homogeneous (Paterson & 
Weiss 1961), it is meaningful to define bulk strain values 
for the deformation. Cobbold (1977) used strain values 
within and between the high strain regions to fix the 

components of a deformation gradient tensor and 
thereby calculate bulk strain values in continuous but 
inhomogeneous deformations. In principle his method 
applies to rocks cut by any one of many kinematically 
equivalent deformation elements such as DDZs, kink 
bands or deformation bands. Minor faults are kine- 
matically equivalent to DDZs, and kinematic patterns in 
minor fault arrays may suggest that the bulk deformation 
due to fault movement is statistically homogeneous 
(Price 1967, Arthaud 1969, Wojtal 1982, 1986). The 
difficulty of defining strains within fault zones, however, 
renders Cobboid's method impractical in faulted rocks. 
Bulk strains due to movement on faults in arrays can be 
measured by other methods only in special cir- 
cumstances (Jamison & Higgs 1987, Kranz 1988), so 
most structural studies of faulted rocks, even when 
offsets on faults are known, focus on fault kinematics 
(Arthaud 1969, Arthaud & Mattauer 1969, Arthaud & 
Choukroune 1972, Etchecopar et al. 1981, Angelier 
1984, Hancock 1985). Studies of fault kinematics are 
often augmented by estimating longitudinal strains in 
key beds (Cooper et al. 1983) or rocks adjacent to faults 
(Williams & Chapman 1983). 

One can calculate meaningful bulk strain values for 
statistically homogeneous deformations when average 
values of spatial gradients of the displacement field are 
known. A geometrical construction here called a dis- 
placement diagram, which gives insight to how fault 
displacements change where faults curve or join (Wojtai 
1982, McCaig 1988), can be used to measure mean 
displacement gradients in faulted or pressure-solved 
rocks. Displacement diagrams provide, therefore, a way 
to convert measurements of displacements on faults or 
across stylolites into bulk strain values for some dis- 
continuous deformations. This technique may con- 
tribute to studies of faulted rocks by helping to include 
strain data in balanced cross-sections of low-grade 
terranes (Woodward et al. 1986) and to understand the 
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bulk material properties of faulted rocks (Wojtal 1982, 
1986, Wojtal & Mitra 1986). 

STRAIN VALUES AND DISPLACEMENT 
GRADIENTS IN CONTINUOUS DEFORMATIONS 

Transformation equations which relate the positions 
of material points in the undeformed state to the posi- 
tions of corresponding points in the deformed state are 
the basis of all strain measurements (Ramsay 1976, 
Ramsay & Huber 1983, pp. 55-71). I here choose the 
final state as reference state, and use the Eulerian specifi- 
cation of the transformation equations (Ramsay 1976, 
Ramsay & Huber 1983, p. 20) 

x = f(x ' ) ,  (1) 

where x is the position vector of a material point in the 
undeformed state and x' is the position vector of the 
corresponding material point in the deformed state 
measured relative to the same origin. In all that follows, 
unprimed quantities refer to the undeformed state, and 
primed quantities refer to the deformed state. The vector 
difference between positions in the undeformed and 
deformed states 

u ' ( x ' )  = x - x' = f (x ' )  - x' (2) 

is the reciprocal displacement of the point x'. Both f and 
u' are continuous functions of x' in continuous deforma- 
tions. 

Spatial derivatives of the reciprocal displacement 
vector field are 

Ou~/Ox~. = E# - 6#, (3a) 

where El~ = Of JOx~ and 6# is the Kronecker delta (6i /= 1 
when i = j and 6ij = 0 when i ~ j). After rearranging 
and in matrix form, equations (3a) are 

E = 0u'/Ox' + I ,  ( 3b )  

where E is the reciprocal deformation matrix and I is the 
identity matrix. 

Familiar strain parameters, like the reciprocal quad- 
ratic elongation, 2' (Ramsay & Huber 1983, p. 281), are 
algebraic functions of displacement gradients values. 
Cutler & Elliott (1983) showed that 

A' = ErE, (4) 

where E r is the transpose of E. Substituting from equa- 
tion (3b), 

A' = [I + 0 u ' / 0 x ' ] r [ l  + 0u ' /0x ' ] .  (5 )  

Equation (5) holds at all points in a continuously 
deformed body where the reciprocal displacement 
vector field is known. 

In geology, it is common to derive finite strain values 
from measured changes in the shapes of ellipsoidal or 
spherical objects or measured changes in the lengths of 
and/or angles between material lines. For the reciprocal 
quadratic elongation, longitudinal strains in the x~ co- 
ordinate direction are 

2;, = (l/l') 2, (6a) 

where l' is the length of a material line parallel to the x~ 
direction in the deformed state and l was the original 
length of that material line. Shear strains in the x~ 
co-ordinate direction on a plane whose normal is the x~ 
co-ordinate direction are 

2;j = 2;i(tan ~i/), (6b) 

where ~Pi/is the angular shear of a line in the x~ direction. 
In homogeneous finite deformations: (1) material 

lines which were straight in the undeformed state are 
straight in the deformed state; (2) material lines which 
were parallel in the undeformed state are parallel in the 
deformed state; and (3) the ratios of lengths of corres- 
ponding segments of a single material line in the unde- 
formed and deformed states are unchanged by deforma- 
tion (Ramsay 1976). Ellipsoidal and spherical objects in 
the undeformed state are transformed into other ellip- 
soids by homogeneous deformations. 

Since the strain values 3.~/in equation (5) are defined at 
individual points, their relationship to measured changes 
of lengths or angles in a real deformation is approximate. 
In order for the straight line/parallel line criteria to hold, 
2' values must be essentially constant across the region 
of interest. In homogeneous deformations, then, the 
reciprocal displacement vector field is not only continu- 
ous, but its derivatives, Ou'/Ox', are continuous and 
constant-valued (Elliott 1970, Ramsay & Huber 1983, p. 
15). In a homogeneous deformation, equations (1)-(3) 
become 

x = E.x '  (la) 

u' = ( E  - I ) . x '  (2a )  

0u ' /0x '  = E - I ,  (3a )  

where E is a matrix whose elements are constant valued. 
Gradients of reciprocal displacement vector fields are 

never constant in nature. It is customary to treat real, 
that is inhomogeneous, deformations by dividing them 
into numerous small regions where, when viewed at a 
larger scale, gradients of the reciprocal displacement 
vector field are essentially constant and deformation is 
homogeneous (Ramsay 1976). It is equally plausible to 
reduce our observation scale and search for broader 
scale homogeneity in the reciprocal displacement vector 
field. By explicitly stating the criterion for homogeneity 
in terms of displacement gradients, we have an arbitrary 
way to judge whether a deformation is statistically 
homogeneous: deformation is statistically homogeneous 
at a scale where displacement vector field gradients in 
the rocks are approximately constant. If the values of the 
displacement vector field gradients can be measured, we 
can calculate bulk strains with equation (5) or its 
equivalent. 

DISPLACEMENT GRADIENTS AND STRAIN 
VALUES IN DISCONTINUOUS DEFORMATIONS 

When kinematic analysis suggests that faults, veins or 
stylolites are elements in a deformation which is statis- 
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tically homogeneous at a scale larger than the individual 
elements (Price 1967, Arthaud 1969, Wojtal 1986), one 
may test for statistical homogeneity by measuring 
gradients of the displacement vector field. I illustrate 
below how displacement diagrams can be used to convert 
standard field data, measured offsets on faults or across 
veins or styiolites, to reciprocal displacement vector 
field gradient values. 

The idea underlying the displacement diagram is to 
depict, in an organized manner, the reciprocal displace- 
ment vectors of the material points in a limited region 
relative to an origin located within that region. Inasmuch 
as the displacement diagram summarizes the displace- 
ments of material points at different positions in a 
deformed body, it is just a bookkeeping method for field 
data. The hodograph, or velocity plane construction, 
used in plane plastic flow (Ford 1963, pp. 491--499) is the 
inspiration for this use of displacement diagrams, but the 
diagrams are used, in practice, like the velocity plane 
constructions used to analyze plate motions (McKenzie 
& Parker 1967, Cox & Hart 1986, pp. 51-83) or the 
stability of intersecting faults (McCaig 1988). Like 
velocity plane diagrams or Mohr diagrams, displacement 
diagrams are images in a separate graphical space (e.g. 
velocity space or Mohr space) of a deformation which 
occurs in 'physical' space. In the case of the displacement 
diagram, we draw a graphical image in displacement 
space. It is, in principle, possible to construct three- 
dimensional displacement diagrams using stereovectors 
on an orthographic net (De Paor 1979, 1983). I will, 
however, here consider only planar principal sections 
through homogeneous deformations where displace- 
ments are confined to the section plane or displacements 
normal to the section plane are equal, i.e. (1) area ratios 
are constant in the section plane and (2) nearby principal 
planes parallel the section plane (Cutler & Elliott 1983). 

To draw this type of displacement diagram, choose a 
material point (O') as an origin, and measure local 
reciprocal displacement vectors for other material points 
P', Q', etc., relative to O' (Fig. la). If material point O' 
were displaced during deformation, one would add a 
bulk translation vector to local reciprocal displacement 
vectors to determine the total reciprocal displacements 
of material points near O'. Each material point in the 
vicinity of O' has an image point on the displacement 
plane. Plot o', the displacement plane image of O', at 
the origin of the displacement diagram. Plot p', the 
image of P', so that the vector o'p' parallels the recip- 
rocal displacement vector for material point P' relative 
to the origin O' and the length of o'p' is proportional to 
the magnitude of the reciprocal displacement vector for 
point P' relative to the origin O' (Fig. lb). Rays 
emanating from the origin o' to distinct image points p' 
or q' give the reciprocal displacement vectors of material 
points P' or Q' relative to the origin O'. Chords 
connecting distinct image points p' and q' give the 
reciprocal displacement vectors of one material point 
(P') relative to another material point (Q'). If two 
material points have the same reciprocal displacement 
vector relative to the origin (e.g. both lie in a rock mass 
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Fig. 1. (a) Homogeneous deformation transforms a square (dashed 
lines) into a parallelogram (solid lines), displacing point P to P',  point 
Q to Q'  and point R to R'. (b) Diagram giving displacement plane 
images of corners in homogeneous deformation in (a). See text for 

explanation. 

which suffered solid body translation), they have a single 
displacement plane image point (the chord connecting 
them has zero length). 

Faulted rocks 

Figure 2(a) shows a hypothetical rock mass cut by an 
array of planar faults where fault-bounded blocks are 
translated parallel to fault planes. Material points within 
each fault-bounded block have equal reciprocal dis- 
placement vectors relative to the origin and plot at a 
single image point. Point o' in Fig. 2(b) is the displace- 
ment plane image of all material points in block O', here 
assumed to be stationary. Block A moved relative to 
block O along fault ffl; the reciprocal displacement 
vector for block A' is f'f. Point a', the displacement 
plane image of block A',  plots so that o'a'  is parallel and 
proportional to f'f. Displacement plane images of blocks 
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Fig. 2. (a) A hypothetical fault array transforms a square (dashed 
lines) into a collection of rigid blocks which have been translated 
relative to their neighbours. (b) Diagram giving displacement plane 
images of selected material points in this discontinuous deformation. 

See text for explanation. 
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Fig. 3. (a) Deformation of a rock mass by two hypothetical fault arrays. Imposed offsets on faults produce net displacements 
of material points which correspond to those in the homogeneous deformation illustrated at right. (b) Diagram showing 
displacement-plane images of fault-bounded blocks crossed by traverses along the x;-x~ axes in (a). (c) Plots of components 
of the cumulative displacement (relative to the origin at the end of each traverse) of fault-bounded blocks (u~) vs distance 
along the traverse (x~). Closed circles give u; components, and open circles give u~, components. The 'error bars' give the 
length of each fault-bounded block crossed during the traverse. The heights of the "steps' from point to point give the 
components of the reciprocal displacement on faults between blocks. Au~lAx~ values are estimated from 'eyeball' fits to data. 
Components of the reciprocal deformation matrix E calculated using equations (3). The calculated area ratio = 
l/(det E) = 1.02. (d) Mohr diagram for reciprocal quadratic elongation, drawn using A' values calculated from displacement 
gradient values in (c); the physical plane sketch above the Mohr diagram shows attitudes of the x[-x~ axes for plotted position 
of the pole to the Mohr circle. The measured orientations of the principal directions differ from the principal directions of 
the imposed deformation by 1 °. The measured maximum stretch value is 2.23; the maximum stretch of the imposed 
deformation is 2.05. The measured minimum stretch value is 0.44, the minimum stretch of the imposed deformation is 0.48. 
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B' ,  C' and D' ,  plotted in the same manner, are b ' ,  c' and 
d ' ,  respectively. Note that o 'c ' ,  the reciprocal displace- 
ment of block C' relative to the origin, is the resultant of 
the reciprocal displacement vectors of block C' relative 
to block B' ,  block B'  relative to block A'  and block A'  
relative to the origin. 

Because the displacement diagram uses only the net 
displacement of material points, we require no informa- 
tion on the relative ages of the faults. In Fig. 3, the net 
displacements of blocks not contiguous with the origin 
(blocks 2'-15') are products of displacements on 
segments of individual faults which were active at 
different times. Each distinct traverse from the origin to 
a particular fault-bounded block must yield the same net 
displacement. Thus, different traverses from the origin 
to each block generate different sets of rays and chords 
whose resultants must be the same. 

In strained rocks, net displacements of material points 
change with position. A displacement diagram con- 
structed from the attitudes, offsets and spacings of faults 
encountered along a straight line traverse across a fault 
array will give the net displacements of fault-bounded 
blocks along that traverse. Plots of the displacement 
components of material points which lie along a straight 
line traverse vs the distance between the material points 
show how displacements change with position. If 
deformation is statistically homogeneous, first-order 
terms account for most of the change in displacement 
with position and plotted points define a straight line. If 
deformation is not statistically homogeneous, a plot of 
displacement component values vs distance will not 
define a straight line. If deformation is statistically 
homogeneous, measuring the slopes of displacement vs 
distance plots for two orthogonal traverses across a 
section provides a way to estimate values of displace- 
ment gradients in the faulted rocks, and thereby to 
calculate bulk strain values for deformation due to 
faulting. 

In Fig. 3(a), the net displacements of material points 
due to movement on faults conform with an arbitrary 
homogeneous deformation. The x~-x~ axes in Fig. 3(a) 
are orthogonal traverse lines, with arbitrary orientations 

across the section, which define right-handed, Cartesian 
co-ordinates. Figure 3(b) gives the reciprocal displace- 
ments, relative to an 'origin' at one end of each traverse, 
of fault-bounded blocks encountered along each 
traverse. The net reciprocal displacements of blocks 1', 
2', 3', etc., along a traverse are the resultants 0'1' ,  0'2' ,  
0'3' ,  etc., on the displacement diagram. The present 
distance between blocks and the origin can be measured 
directly on Fig. 3(a). Figure 3(c) is a plot of the reciprocal 
displacement vector components (ul) vs distance along 
the traverse. Since deformation is statistically 
homogeneous, ul vary linearly with x~, and the plots of 
u~ vs x~ approximate straight lines. The slopes of these 
lines, Au~/Ax~, are average values of the displacement 
gradients au~/ax~. A Mohr diagram for reciprocal quad- 
ratic elongations (Fig. 3d), calculated using equation 
(5), gives strain principal values, strain principal direc- 
tions and area ratios for the bulk deformation; they are 
good estimates of the imposed strains. Wojtal (1982, 
1986) used the slopes and intercepts of two plots of u; vs 
x~ to estimate the four displacement gradient values, but 
four u'i vs x~ plots yield more reliable estimates of the 
imposed displacement gradients in test cases. 

This technique, which relies upon an averaging of 
displacements at different distances from arbitrary 
origins in a rock, may yield bulk strain values which, 
while they are in good agreement with physical features 
developed in the rock, are misleading inasmuch as the 
deformation is not homogeneous in a strict sense. In 
fact, it is always possible to use the net displacements of 
material points at some distance from the origin to 
define 'average' values of displacement gradients (Fig. 
4). Whether these 'average' values are good estimates of 
the displacement gradients throughout an area depends 
upon the nature of the deformation (Fig. 4). The pro- 
posed method requires, like all strain measurement 
methods, judgement to be used most effectively. 

If faults have bends or are curved, and no gaps or 
overlaps form during deformation, fault-bounded blocks 
cannot remain rigid. In the simple case illustrated in Fig. 
5(a), a fault-bend fold (Suppe 1983) formed in the fault's 
hangingwall. Since different portions of the hangingwall 
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Fig. 4. (a) A section through a hypothetical deformation where slip on discrete surfaces produced bulk inhomogeneous 
simple shear. The total deformation comprises two regions of homogeneous simple shear. Note the orientations of the x;- 
x~ axes. (b) A plot of displacement component u[ vs distance x~ across the section. Parallelogram abcd connotes the shape 
change estimated from the net offset of block H' relative to block O', i.e. where the slope of the line o'h' estimates Ou;lax~ 
in the deformation. The displacement vs distance plot, however, is composed of straight line segments o'e' and e'h', each 
corresponding to a region of uniform simple shear. The true shape change is connoted by the two parallelograms abfe and 

cdef. 
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Fig. 5. (a) A fault hangingwall must deform as it moves over a rigid 
footwali on a curved fault. (b) Displacement plane images of selected 
points in (a). The displacement plane image of different portions of the 
hangingwail (a' ,  c' and e ')  move farther from the origin o' as net 
displacement on the fault increases. If ramp height is fixed, their 
resultant displacement vectors (o 'a ' ,  o'c '  and o 'e ' )  become more 

nearly equal. 

have different net displacements, no single image point 
represents the hangingwall in displacement space 
(Wojtal 1982, McCaig 1988). The chords which connect 
the images of different parts of the hangingwall indicate 
that the relative movements across fault bends, like the 
relative movements of portions of grains during grain 
boundary sliding (Brunner & Grant 1959), can be 
described as simple shear parallel to a particular plane. 
In the case of a concave fault bend, the shear plane 
bisects the bend. As Suppe (1983) noted, the attitudes of 
fold hinges (shear planes) at convex bends have more 
degrees of freedom. Geologically distinctive but 
kinematically equivalent deformation elements, such as 
kink bands, shear zones or subsidiary faults (Fig. 6), may 
appear in these settings, provided that the net offsets 
across those elements are compatible with the offsets on 
the faults. 

Rocks with stylolites or veins 

Considering only the construction of a displacement 
diagram, there are no reasons to limit a priori the 
movement of neighbouring blocks to displacements 
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Fig. 6. Geologically distinct but kinematically equivalent deformation 
elements may have similar appearance in displacement space. 
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Fig. 7. (a) Hypothetical deformation where rigid blocks move relative 
to each other by removing material from some boundaries and adding 
it along others. (b) Diagram giving displacement-plane images of 
selected material points in the deformation portrayed in (a). The series 
of chords between displacement plane images of fault-bounded blocks 
encountered during a closed-loop traverse in physical space form a 
closed-loop if displacements on block boundaries are mutually com- 

patible. 

parallel to their common boundary or to rule out the 
formation of 'gaps' or 'overlaps' during deformation. 
Those restrictions exist in many settings, but the diagram 
itself can be used to analyze deformations where 
material is removed or added along block boundaries 
(e.g. by solution transfer). In those cases, a displacement 
diagram could be used to test if block displacements are 
mutually compatible by seeing if closed traverses in 
physical space produce closed loops in displacement 
space (Fig. 7). 

The method for measuring strains in faulted rocks 
outlined above can also be applied to volume-change 
deformations, i.e. rocks with stylolite or vein sets. Con- 
sider a section normal to a hypothetical array of stylolites 
where the displacements associated with the removal of 
mass along the stylolites (without local reprecipitation) 
conform with an imposed homogeneous deformation 
(Fig. 8a). Figure 8(b) is a displacement diagram con- 
structed for lithons O',  P', etc., encountered along two 
orthogonal traverses across the section. A plot of recip- 
rocal displacement of lithons vs distance along each 
traverse (Fig. 8c) estimates the displacement gradients 
in this setting. Bulk strain values calculated from the 
measured displacement gradient values, illustrated by 
the Mohr diagram in Fig. 8(d), are good estimates of the 
principal directions, principal stretches, and area ratio 
of the imposed deformation. 

Field example 

Figure 9(a) is a downplunge projection, drawn on a 
principal plane, of a fault array in Pennsyivanian strata 
at the base of the Cumberland Plateau thrust sheet 
(Wojta11982, 1986, Wilson & Wojtal 1986). Since faults 
in the array, particularly low-angle reverse faults, are 
not planar, deformation could not have occurred solely 
by slip on faults. The heights of ramps in the reverse 
faults are small relative to offsets on the faults, so net 
displacements, measured relative to an origin at one end 
of a traverse across several fault-bounded blocks, of 
different portions of fault hangingwalls are nearly equal 
(Fig. 5). The intra-block deformation which occurs near 
ramps in low-angle faults does not introduce gross dis- 
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Fig. 8. (a) Hypothetical deformation by removing material along stylolite surfaces. The removal of material along the 
surfaces causes displacements of points in the grid which correspond to those in the homogeneous deformation depicted at 
right. (b) Diagram showing displacements of lithons crossed by traverses along the x;-x~ axes on (a). (c) Plots of components 
of the cumulative displacement (relative to an origin at the end of the traverse) oflithons (u~) vs distance along each traverse 
(x~). Open circles are ul components and filled circles are u~ components. ,'~ul/~x~ values are estimated from "eyeball' fits to 
data. Components of matrix E calculated with equations (3). The area ratio of the imposed deformation = 0.70; the 
measured area ratio = I/(det E) -- 0.67. (d) Mohr diagram for reciprocal quadratic elongation, drawn using values 
calculated from displacement gradient values given in (c). The physical plane sketch above the Mohr diagram shows 
attitudes of the x;-x~ axes for plotted position of the pole to the Mohr circle. The measured orientations of the principal 
directions differ from the principal directions of the imposed deformation by 2 ° . The measured minimum stretch value is 
0.68; the minimum stretch of the imposed deformation is 0.7. The measured maximum stretch value is 0.99; the maximum 

stretch of the imposed deformation is 1.0. 
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Fig. 9. (a) Section of pervasively faulted Pennsylvanian strata just above the Cumberland Plateau thrust fault, constructed 
by projecting structures onto a single plane inferred to be a principal plane of the deformation (see Wojtal 1982, 1986, 
Wilson & Wojtal 1986). x; and x.~ axes give the orientation of the traverses across the section. O' ,  A' ,  etc., are individual 
fault-bounded blocks. (b) Displacement diagram for fault-bounded blocks crossed along the two traverses across the section 
in (a). (c) Plot of displacement components u', vs position along co-ordinate axes x; or x~. Open circles are u; components; 
filled circles are u" components. Au[/Ax~ values are estimated from "eyeball' fits to data. (d) Mohr diagram for reciprocal 
quadratic elongation drawn using strain values calculated from displacement gradient values derived in (c) with equations 
(5). Dashed square and solid parallelogram at right indicate the initial and final states corresponding to the measured strain 

values. 
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parities into the displacements of fault-bounded blocks 
measured in different traverses across a section. Figure 
9(b) gives the displacements, derived from fault 
attitudes and offsets measured in the field and on Fig. 
9(a), of material points which presently fall on two 
orthogonal traverses across Fig. 9(a). Plots of reciprocal 
displacement components u~ vs position x~ (Fig. 9c) 
estimate displacement gradients due to fault movement. 
A Mohr diagram for reciprocal quadratic elongations 
calculated from these displacement gradient values (Fig. 
9d) gives the bulk strains due to movement on faults. 

The strain values reported here are similar in outline 
but different in detail from those reported by Wojtal 
(1986), owing to the use of slopes of u~ vs x~ plots instead 
of intercepts of u~ vs x~ plots to calculate Au~/~x~ values. 
As noted above, the four-slope method yields better 
estimates of imposed strains in hypothetical situations. 
Furthermore, the area ratio in these rocks is larger 
(0.905) with the 'better' strain values. It is, then, easier 
to reconcile strain values in strata immediately adjacent 
to the thrust, where Wojtal (1986) reported small area 
ratios, with those in strata farther from the thrust, where 
area ratios are near unity. The strains still have the 
strong rotational component expected in a fault zone. 

The measured strains are good estimates of the total 
deformation only in as far as the total deformation is 
statistically homogeneous. Inspection of the displace- 
ment vs position plots (Fig. 9c) shows that displacements 
are not strict linear functions of position, and under- 
scores that strain values given here record only the 
'first-order' change of shape due to movement on faults. 
Departure from homogeneity (non-linearity in displace- 
ment vs position plots) may be due to (1) errors in 
measuring fault offsets, (2) smooth curves or sharp 
bends in faults or (3) superposed inhomogeneous strains 
not associated with systematic deformation structures or 
microstructures (Cooper et al. 1983). All three effects 
are likely to contribute to non-linearity in displacement 
fields. Nevertheless, these 'first-order' strain values pro- 
vide insight to the kinematics of the deformation due to 
movement on arrays of faults, and may aid in analyzing 
the mechanics of fault arrays. This is particularly true in 
cases where, like the Cumberland Plateau thrust zone, 
systematic grain-scale deformation structures are 
lacking. 

SUMMARY 

Deformation which is inhomogeneous, and possibly 
discontinuous, at one scale of observation may be statis- 
tically homogeneous when observed at a smaller scale. 
In statistically homogeneous deformations, where dis- 
placement gradient values are approximately constant, 
bulk strains can be defined. To measure strains within a 
principal plane of a discontinuous, but statistically 
homogeneous, deformation with constant area ratio: 

(1) draw an accurate section of the deformed rocks; 
(2) inscribe co-ordinate axes across the section with an 

arbitrary orientation; 

(3) construct displacement diagrams for material 
points which presently fall on two mutually perpen- 
dicular axes, using offsets measured in the field or on the 
section through the deformed rocks; 

(4) plot the components of the reciprocal displace- 
ment vectors for individual fault-bounded blocks along 
the traverse line against the positions of the fault- 
bounded blocks relative to the assigned origin. In 
homogeneous deformations, the reciprocal displace- 
ment vector component values fall along straight lines 
whose slopes are displacement gradient values; 

(5) substitute the displacement gradient values into 
equation (5) (or its equivalent for the desired strain 
parameter) and calculate strain values. 
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